Near-Field-Resonance-Enhanced Plasmonic Light Beaming
نویسندگان
چکیده
منابع مشابه
Beaming Visible Light with a Plasmonic Aperture Antenna
We investigate experimentally the parameter space defining, in the visible range, the far-field diffraction properties of a single circular subwavelength aperture surrounded by periodic circular grooves milled on a metallic film. Diffraction patterns emerging from such an antenna are recorded under parallel- and perpendicular-polarized illumination at a given illumination wavelength. By monitor...
متن کاملEnhanced transmission in near-field imaging of layered plasmonic structures.
Near-field imaging of an engineered double layer structure in transmission mode has shown enhancement of light intensity through the structure. An array created by an optically thick double layer structure of a total thickness of 165 nm containing twin 50 nm Au layers was imaged using a near-field scanning optical microscope in illumination mode. The resulting transmission image shows an increa...
متن کاملPolariton-enhanced near field lithography and imaging with infrared light
A novel approach to making a material with negative index of refraction in the infrared frequency band is described. Materials with negative dielectric permittivity ! are utilized in this approach. Those could be either plasmonic (metals) or polaritonic (semiconductors) in nature. A sub-wavelength plasmonic crystal (SPC), with the period much smaller than the wavelength of light, consisting of ...
متن کاملLow-diffraction beaming in plasmonic crystals.
We analyze the propagation of electromagnetic modes guided by periodic plasmonic structures. We use full-wave solutions of Maxwell equations to calculate dispersion of these modes and derive analytical description of their optical properties. Finally, we demonstrate that, at a certain frequency range that can be controlled by the geometry, diffraction of these guided states is strongly suppress...
متن کاملNear-field asymmetries in plasmonic resonators.
Surface-enhanced infrared absorption (SEIRA) spectroscopy exploits the locally enhanced field surrounding plasmonic metamaterials to increase the sensitivity of infrared spectroscopy. The light polarization and incidence angle are important factors for exciting plasmonic nanostructures; however, such angle dependence is often ignored in SEIRA experiments, typically carried out with Cassegrain o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2010
ISSN: 1943-0655
DOI: 10.1109/jphot.2009.2039865